

Time-Driven Cost Estimation Learning Model

Theethawat Savastham & Nikom Suvonvorn

Dept. of Computer Engineering, Prince of Songkla University, Thailand <u>theethawat.s@outlook.co.th</u> <u>nikom.s@psu.ac.th</u>

The 16th Internation Conference On Genetic and Evolutionary Computing (ICGEC-2024) Miyazaki, Japan: 28 August 2024

1. Problem Statement

- Artificial Neural Network (ANN) is famous for analogy-based construction cost estimation
- Generalizability makes another manufacturing cost estimation possible with some limitation

2. Objectives

• To create a glass box model in cost estimation using the idea of Artificial Neural Network and Time Driven Activity-based Costing

3. Related Theory: Time Driven Activity-based Costing (TDABC)

Siguenza-Guzman, L., et.al. "Recent Evolutions in Costing Systems: A Literature Review of Time-Driven Activity-Based Costing." (2013) <u>The Review of Business and Economic Literature</u>

$$Total \ Cost = DMC + DLC + \sum_{n=1}^{N} \sum_{i=1}^{I} \sum_{k=1}^{M} t_{i,k} \times C_n$$

- DMC Direct Material Cost
- DLC Direct Labor Cost
- N Amount of All Resource Pools
- I Amount of Activity in Resource Pool
- M Number of Events in activities
- $t_{i,k}$ Time to perform event i in activity k
- C_n Unit cost of resource n

- Mathematical model
- Model Architecture Design
- Learning Algorithm
- Weight Adjustment Algorithm

4.1 Mathematic Equation Modeling

- TDABC in style of ANN
- Combine labor cost with overhead cost
- Remove complexity by merging all activities and events as one activity

4.1 Mathematic Equation Modeling (Cont.)

- Find Unit cost in minutes of labor and capital/investment cost
- Use TDABC Practical capacity model, labor will work only 80-85% of all working times
 - Daily Paid Labor

$$unit \ cost = \frac{cost}{1 \ day} \times \frac{1 \ day}{workhour} \times \frac{1 \ hr}{60 \ min} \times \frac{1}{0.8} = \frac{C_l}{48 \ H_d}$$

• Monthly Paid Labor

$$unit \ cost = \frac{cost}{1 \ month} \times \frac{1 \ month}{workingday} \times \frac{1 \ day}{workhour} \times \frac{1 \ hr}{60 \ min} \times \frac{1}{0.8} = \frac{S}{48D_m \ H_d}$$

• Capital Cost

$$unit \ cost = \frac{cost}{lifetime \ (year)} \times \frac{1year}{12 \ month} \times \frac{1 \ month}{workday} \times \frac{1 \ day}{hourwork} \times \frac{1 \ hr}{60 \ min} = \frac{C_C}{720 \times D_m \times LT \times MH}$$

4.1 Mathematic Equation Modeling (Cont.)

$$total cost = \sum_{i=1}^{I} C_{m_i} q_i + \left(\frac{1}{48 H_d} \sum_{j=1}^{J} C_{l_j} + \frac{1}{48 D_m H_d} \sum_{k=1}^{K} S_k + \frac{1}{720 D_m} \sum_{l=1}^{L} \frac{C_{C_l}}{L T_l M H_l}\right) \cdot t$$

Material Daily Paid
Labor Monthly Paid Capital Cost

4.2 Architecture Design and Learning Algorithm

• Add the hidden weight to represent the actual situation of manufacturing

total cost $= \sum_{i=1}^{I} C_{m_i} q_i + \frac{1}{48 H_d} \sum_{j=1}^{J} C_{l_j} t$ $+\frac{1}{48D_m H_d} \sum_{k=1}^K S_k t$ + $\frac{1}{720D_m} \sum_{l=1}^{n-1} \frac{C_{C_l}}{LT_l M H_l} t$

4.2 Architecture Design and Learning Algorithm (Cont.)

• Add the hidden weight to represent the actual situation of manufacturing

$$total cost = w1 \sum_{i=1}^{I} C_{m_i} q_i \cdot wa_i + b_a + w2 \frac{1}{48 H_d} \sum_{j=1}^{J} C_{l_j} t \cdot wb_i + b_b + w3 \frac{1}{48D_m H_d} \sum_{k=1}^{K} S_k t \cdot wc_i + b_c + w4 \frac{1}{720D_m} \sum_{l=1}^{L} \frac{C_{C_l}}{LT_l M H_l} t \cdot wd_i + b_d + b$$

4.3 Weight Adjustment

Model Level Gradient

$$\frac{\partial E}{\partial w_1} = \frac{\partial E}{\partial y} \cdot \frac{\partial y}{\partial w_1} \text{ By Chain rule}$$

$$= MS \acute{E} \cdot \frac{\partial \left(w_1 \left(\sum_{i=1}^{I} C_{m_i} q_i \cdot wa_i + ba\right) + \dots + b\right)}{\partial w_1}$$

$$= MS \acute{E} \cdot \left(\sum_{i=1}^{I} C_{m_i} q_i \cdot wa_i + ba\right)$$

$$w_{1,new} = w_{1,old} - \alpha \left(MS \acute{E} \cdot \left(\sum_{i=1}^{I} C_{m_i} q_i \cdot wa_i + ba\right)\right)$$

Element Level Gradient

$$\frac{\partial E}{\partial w_{a_i}} = \frac{\partial E}{\partial y} \cdot \frac{\partial y}{\partial w_{a_i}} \text{ By Chain rule}$$
$$= MS \acute{E} \cdot \frac{\partial w_1 \left(\sum_{i=1}^{I} C_{m_i} q_i \cdot w_{a_i} + ba \right)}{\partial w_{a_i}}$$
$$= MS \acute{E} \cdot (C_{m_i} q_i)$$

$$w_{a_i,new} = w_{a_i,old} - \alpha(MS \acute{E} \cdot C_{m_i} q_i)$$

 α is a model learning rate 12

5. Experimental Result

- Experimented with Python 3.10.6
- Train a model with 70% of simulated datasets and test them with the rest 30%
- Measure the error in
 - Mean Square Error (MSE)
 - Root Mean Square Percent Error (RMSPE)

5.1 Datasets

- Simulate 2 datasets with different complexity levels
- Actual cost in Dataset 1: 32.03 48.98, Dataset 2: 20.05 97.94 THB

Data	Dataset 1			Dataset 2		
Dala	Amount	Mean	S.D.	Amount	Mean	S.D.
Duration (Min)	2,000.00	4.48	1.76	2,000.00	5.99	3.34
Actual Cost (THB)	2,000.00	40.55	4.97	2,000.00	51.83	19.56
Material Amount (THB)	14,007.00	25.56	47.32	13,026.00	81.08	115.29
Material Cost (THB)	14,007.00	0.57	0.39	13,026.00	0.65	0.46
Daily Labor Cost (THB)	2,678.00	424.78	25.00	1,762.00	404.06	126.57
Monthly Labor Cost (THB)	1,336.00	12,000.00	0.00	2,256.00	27,135.74	12,554.15
Capital Cost (THB)	1,025.00	10,590.00	0.00	529.00	5,238.85	3,047.42

15

5.2 Result

• Training and Validation Errors in each Iteration

5.2 Result (Cont.)

• Result after 400 iterations of training with learning rate $0.0000001(10^{-7})$

Dataset	Dataset 1	Dataset 2				
Loss (MSE)	529.20	1,365.07				
Validation Loss (MSE)	471.12	1,557.81				
% Loss (RMSPE)	29.33	38.97				
Example on Actual Cost data						
Range (THB)	32.03 - 48.98	20.05 - 97.94				
Mean (THB)	40.55	51.83				
Predicted (THB)	22.64 - 63.35	12.24 – 136.11				
Error (THB)	9.39 – 14.37	7.81 – 38.17				

5.3 Discussion

- Strong
 - Specially designed for cost estimation
 - Clear structure and explainable
- Weakness
 - Rough model structure
 - Incomprehensive sample data or Incomplete nature understanding

6. Conclusion and Future Work

- This research creates the TDCE model which is a glass box cost estimation model based on TDABC and ANN
- The Model is clear and explainable
- The model produces a prediction result with an error of 25-40 %
- The model has some problem on resolution level and sample data nature
- Future work is to evaluate and fine-tune with real-world data

Any Questions ?

